A GENERALIZATION OF DIFFERENCE SETS

Robert J. McEliece'

a. Introduction. A (v,k,\) difference set D is a set of k distinct

residues-{;l, aé, coey &k} modulo v such that every residue b # O (mod v)
can be expresse% in exactly A ways in the form b = a; - aj (mod v). With
¢ach differencegset we may associate & bingry periodic sequence (sl, 859 ces)
wimh.sj =~ 1 if g(mod v) is in D, and si = 0 otherwise. 6Since this sequence

i5 periodic of period v, we need only consider one cycle from the sequence.

Sooh cycles we %gree to call (binary) difference cycles. Difference cycles
(ecuivalently, difference sets) have been studied intensively (Refs. (1), (3)).

They have Important applications to digital communications, mainly because

they have 2~leve§l autocorrelation. In this paper we shall point out certain
cther (equivaleat) properties of difference cycles which seem susceptable to
immediate gener%lization, but show that these generalizations are vacuous,

b. Fotivutionj If s is a difference cycle, then the defining property of
difference sets‘tellu us that the number of ordered pairs (Si’ ai+b) from s
(subscripts tak%n mod v) of the form (1,1) is A for all values of b # 0 (mod v).

More generally, let the number of ordered pairs (si, si+b) from s of the form

(e1, ¢,) be dengted by p_ _ (b). Thus p, (b) = A for all b # 0 (med v). A
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simple enumeration now shows that, in addition, p, 1(b) = py o(b) =k -1,
' J 2

Pg 0(b) =V - 2# + A\, whenever b ¥ O (mod v). For let us represent s and
’ i ,

its bth translate s _ schematically as below:

b

1
!
i

k ' v-k
S £ N

L1l ... 1 11...1 00 ... 0 00 ... 0

\

Spi . .o 1 0 ... 0 11 ... 1 00 ,.. 0
e 28 B 4
A K-\ K-\ V-2

]

Since exactly A of the ones from s match #p with 1's from s, , the re-
maining k-A gggé from s must be paired with zeros from Sy, This shows
pl,O(b) = k-\. ?The other relations may be verified similarly.

Now let s ﬁe any binary cycle of length v;(not necessarily associated
with a differenge set). The (unnormalized) au?ocorrelation of s, Rs(b), has
been defined as'follows (Ref. (1)): R (b) = A'(b) - D_(b), where A_(b) is
the number of agreomenta between s and Sy (i.e., the number of components in
which s and s have the same entry) and D (b) is the number of disagreemsnts.
With the notati%n introduced above, R (b) Py l(b) + P o(b) - Py O(b) - P l(b)
Our remarks theA show in particular that for a difference cycle s, R (b) is
independent of | if b # 0 (mod v), and so s has two-level autocorrelation. (Of
course R_(0) = v). Conversely, it is easy to show that, except for pulse
cycles (i.e., s = (1,0,0,...,0) or (0,1,1,...,;) or a translate of one of

, these), any cycle with two-level autocorrelation is associated with a

difference set (Ror. (1)).

¢.  Generalizatdon. The preceding discussion motivates the following formal




generalization af a difference cycle which depends neither on the notion of
autocorrelationéfunction nor on group theory. If s = (sl, Spy eres Sv) is
any binary cycle, and if b is an integer satisfying O < b < v, we define &

bigram M(s,b) ag follows: M(s,b) = {(si, si+b): i=1,2, ..., V{} ’
multiplicity inéluded. We have seen that if s is a binary difference cycle,
I !

then M(s,b) = Més,b') (equality means that the two collections contain the

1

same pairs withithe same multiplicity) whenever 0 < b < v, 0 <b' < v, Nore

generally, we d?fine an m-gram for an n-ary cyéle s = (31, Spy eeey Sv) as

follows:

b

i

|

E

13 3 - I3
Definition: Let

for

= (bl’ by eeey bm-l) be an ordered (m-l)-tuple of integers

with C < b

1< b;;)_ Ceen< bm—l < Vv, We define the m-gram M(s,b) to be the

|
COJLCCthDM{kSif Si+bl’ si+b2’ ooy si+bm.1), i=1,2, ..., v{} multiplicity

included. If M§s,g) = M(s,b') for all such b and b', we say that s is m-tuply
regular, %

Thus in thﬁ new terminology an ordinary difference cycle becomes a
doubly-regular ?inary cycle. We have formally: generalized in two directions;
we allow both the degree of regularity of s and the number of symbols in s to
increase.: We remark that m-tuply regular unar§ cycles and singly regular |

n-ary cycles are trivial, and that a pulse binary cycle is m-tuply regular in

a trivial way. (It is surprising thut binary difference cycles and the above
|
trivial dxmnploq are the only examples of m-tuply regulx n-ary cycles possible,

We prove this rgsult now,

d. Non-Existence.

Theorem 1:| If s is an m-tuply regular n-ary cycle, then one of the four

alternatives below holds: : )




(1) m=2, n=2and s is a difference cycle

i

(2) n=2and s is a pulse
(3) m=1

() n=1 .

The proof is in two parts: (1) We assume m > 2 and conclude n = 1 unless
s is a pulse; (é) We assume n > 2 and show m =:1,

Suppose, tﬁen, that s is an m-tuply regular n-ary fycle withm > 2, It
is clearly sufficient to prove this is impossi$le‘for n=2, since if n > 2

we may identify;certain of the symbols to obtain an m-tuply regular binary

cycle., We now Qigress in order to place the problem in a wider context.

i

Definition: (Hénanai, Ref. (2)). Let S be a set of v distinct objects., A

tactical 9onfiggration C=2C [k,m,k,v] is a collection of b subsets (called
blocks) Bys i =gl,2, eeey b, of S such that eaéh block contains exactly k
objects from S,%and cach (unordered) m-tuple ffom S occurs in exactly A blocks,
C is symmetlric %f b = v, and if each object iniS occurs in exactly k blocks.
Our plan i% to show that the existence of an m~tuply regular binary cycle
implies the exi%tence of a symmetric C {k,m,k,?} . Theorem 2 shows that such

configurations are trivial; we prove Theorem 2;first.

| ;
Theorem 2:{ There are no nontriyial synmetric C [k,m,k,v] configurations,

1
i

if m 2 3. (Tri¢ial means that k does not satisfy m s k < v - m).
|
Proof': It‘is clear that a C [F,m,X,J] configuration is also a C[?,m',k,v]
|

configuration 9r m' s m, since each unordored m'-tuple from S is a subset of

: v-m* . ;
oxactly (mrm') unordered m-tuples from S, and so each m'-tuple occurs




—5-

m-m'!

a1y - ! - N .
k(__:,) / (k Hl) times in the configuration. Consecuently it wiil be suffi-

cient tc prove @heorem 2 for m = 3.

For the mo%ent let A = XB, and let A, represent the number of times each
unordered pair grom S occurs in C. Then counting in two different ways the
rumber of times%a triple involving a given pair occurs in the configuration,

i
we see that i
!

|
Ao(k=2) = Ag(v=2) . ? o (1)
Lote that (1) hqlds for any C {k,B,x,v] configuration, symmetric or not.
| ‘
If C is syﬁmetric, let us count in two ways the number of times a pair

I
involving a given element occurs:

k(k—l): = Ay (v-1) . (2)

¢
i

We now perform the standard trick (see Bose (5)) of deleting from C an
|

arbitrary block, and all objects occuring in that block. Since C is in part-

icular a symwetric block design, the derived design C' will also be a
i

C ik',?,x',v'] éconfiguration (but no 1§nger symmetric) with k' = k - Aoy

'

s X3:§Xq = Ay, V! = v -k. Eq. (1) will now apply to the derived

o

A=A,

parameters; i.eJ,

Ao (k -‘. Ay = 2) = Ag(v-k-2) - (3)

Combining 2q. (3) with Eq. (1), we see that x’;: / k= Ag. Thus kz/k = (k-2)(v-2)
|

i
|
i

|
i
|
|
i
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ard so, from Eq. (2), (k-1)/(v-1) = (k-2)/(v-2); which implies k = v. But
=V is a triv?al design, and this completes the proof of Theorem 2.

To complete the first part of the proof of Theorem 1, it remains to
sr.ow thaﬁ the eiistence of an m-tuply regular binary cycie (m 2 3) which
25 not a pulse implies the existence of a non-trivial symmetric C [k,m,k,v}

configuration, 'First of all, it is clear that if 1 <k < m, then no such
| j k m-k
. ; A
cycle exists, since for certain b's, M(s,b) will contain (11 ... 1 00 ... 0O),

while others will not. Similarly v -m >k > v - 1 is impossible. Thus,

except for-pulsés all m-tuply regular binary seqQuences with k 1's satisfy

|

| :
. i
m<x<£v-m |
i

! I
If now s is an m-tuply regular binary cycle of length v (wWe assume the

two symbols areiO and 1), let S = {al, 35, avgbe any set containing v

| i
distinct objectT. We define blocks B, i =0,1,2, ..., v - 1 as follows:

ajeBi if and on}y if Si+j = 1. To show that t?ese blocks form a symmetric
- i

¢ {k,m,x,v] congiguration, we need only verify the m-tuple condition.

Thus, let Qail, aiz, cees B ) be an m-tuple from S, and assume
! m

t
i
1, <1, <., <ijm. Let by =i, =35, J=1,2, ..., m- 1, and set b =
i
(Dy, Doy eeey b
].’ 2) 3

r?_1) .

will occur in M(s,b) a certain number of times, say Xm, and km is independent
|

Since s is m-tuply regular, the m-tuple (1,1, ..., 1)

1

of b, It is clﬁar that if (Si’ Sitb.? ***? Si4b ) is.such an m-tuple from
1 m-1
t

M(s,b), then Bij . will contain the m-tuple (ail’ aiz, veey By ), and conversely.
i ‘ . m

Hence every m—tdpte from S occurs in exactly xm blocks, and so the blocks Bi
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dc form a (non-trivial) symmetric C [k,m,k,v] configuration. 3But this is
impcssible by Theorem 2, and so every m-tuply regular binary cycle is a
pulse, This co%pletes the first part of the proof of Theorem 1.

Our attention has recently been drawn to the fact that the second half
¢ Theorem 1 wa; proved independently by R. Titsworth (Ref. 6) several years
azo. (The readér who consults that report will see that Titsworth's "perfect™”

(=3

segquences are pfecisely the doubly regular sequences discussed here.) We
present here a §ew proof which makes use of the highly:deveIOped theory of
difference setsi

In arder t% prove the second half of Theo?em 1, we will assume that s is
u Jdoubly regulu% n-ary cycle, and show tha£ n 5 2 is impossible, It will be

sufficient to p#ove that there are no doubly regular ternary cycles, since a

doubly regular n-ary cycle (n > 3) can be transformed into a doubly regular

{
ternary cycle by a simple identification of certain symbols.

If s is a %oubly regular ternary cycle in the symbols 0,1,2, let s

centain kc zero$, k. ones and k2 twos, We observe that each ki must be 2 2,
;

1
since if (say) RO = 1, then some bigrams would contain (0,1) but not (0,2),
while others wo#ld contain (0,2) but not (0,1). Let us now identify the

1
symbols QO and li s then becomes a doubly regular binary.cycle (which is not a '

i
Similarly, Do and Dl are also difference sets. But also

putue by the ob{;mwut.;{on abow ), and so the set D, == {i_: 8, = 2} is a

difference sat,

|
t
i
1

DO,l ={i Psy 0 or sy = l}, being the complgment of D2, is a difference

i
{
I
i

set. Also, Dy % and D, ,, defined similarly, are also difference sets.
2 ? . :

! . .
We remark ?t this stage that O(—)Dl = Do;l’ Dd{.)Dl = ¢. This means

{
that if we could prove that the union of two disjoint difference sets is never
i .
| ‘

]
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& ncn-trivial difference set, the second part of Theorem I wculd follow as
an immediate ccrollary, But although there is strong evidence that this is
sc (see thre ciscussion at the end of this paper), we are as yet unable to
prove it. So wé must go another route,

To ccntinueja with our proof, write DO =§al, 85y eees akoi and

Dy ={bl, b5, "t bkl} . VWe define the polynémials QO and Gl (see Ryser

Ref. (3)) as follllows:

’,
| ®

i a. a aa“k

Qy(x); = xtaex?e o+ x O (mod x¥

- 1)

b
: b b k
Ql(x) sxl+x2+...+xl(modxv-l) .

Then since DO and Dl are difference sets, we have, as in Ref. 3,

j Qo(x) ;:Qo(x-l) + N T(x) (modi x' - 1)

!

|

| 8, (x) %g (1)
|

i

!

0 = Rgr Mg = kol - 1)/(v - 1), ny =k = A, A = ky(ky = 1)/(v - 1),

|

‘ ) - "
and T(x) = 1+ 2+ x + ... +XVl (mod x - 1).

o

L]

n, A T(x) (moc:l%::cv -1) , (L)

where n, — Kk

Q

Now since ST is doubly regular, the pair (1,0) occurs in each bigram M(s,b)
equally often, si:ay w times. This says that every residue b # O (mod v) can be

written in exactly u ways in the form b = a, “;bj (mod v), In terms of the

O's, this condition becomes |




Go(x) Gl(x_l) - u + uT(x) (mod x - 1) . (%)

]

If we multiply both sides of Eq. (5) by Gl(x),land use Eq. (4), we obtain

800 + w00 = Gy = hgi) 2x) (mod ¥ - 1) . (6)

(Observe that R(x)T(x) = R(1)T(x) (mod % - 1); see Ryser (3).) But the
lefthand side of (6) cannot contain powers of x higher than v - 1, and so
But this is impéssible: the left-hand side of%Eq. (7) cannot contain all

powers of x less than v, since some s, are equal to 2. This contradiction
completes the pfoof of Theorem 1,

)

!

e. Conciusion} We remark finally that there:is a certain amount of arbit-
| :
rariness in our {[definition of maltiple regularity. With hindsight at least,

i
we might regard:the fact that the pairs, (0,1) and(1,0) occur evenly distributed

among the bigraﬁs of a difference cycle as a fluke, peculiar to the case of
|

binary cy&les. §We could then define multiple regulariiy by only requiring
that m-tuples of the form (aa ... a) be evenly distributed. If we had done

1 .
this, the first part of the proof of Theorem 1 would still have worked, since
| :

we only needed‘ﬁhe even distribution of (11 ... 1) anyway. But a new proof
’ ,

of the second p%rt of the theorem would be needed; in fact, our conjecture

that the union of two disjoint difference sets can never be a difference set
is exactly what |is required at least for ternary cycles. Some numerical

evidence thai this conjecture is true is available: for example, we require
}
i

i
i
t
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(v - l)lko(ko -%1), (v - 1)]k1(kl -1), (v-1) (ko + kl)(ko + k) - 1), and

Miller (Ref. L)%has found all triples (v, kq» kl) which satisfy these condi~

tions, and with%ko # k;. It is easy to show that k, = k; is impossible.

Using Miller's }ist, the author has been able to verify the conjecture for

v < 300; there %re 32 triples (v, kg, kl) in this range. There would appear

to be no particﬁlar difficulty in pushing these numerical results even farther,
i
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